GEO ENERGY NETWORK

The Atmosphere, Hydrosphere, Lithosphere & Biosphere Powered By The Heliosphere

Posts Tagged ‘sustainable energy

Recent News on Energy and the Environment 02.01.09

leave a comment »

Posted by: Karl Ramjohn

Some recent articles featured on the Energy Environment News Portal, on current and emerging issues related to energy and the environment

Coffee as a source of biofuels?

Solar vs Wind Energy

World Crops Threatened by Strengthening La Nina Cooling

Mega solar power plant in Portugal connected to the grid

NASA Study Links Severe Storm Increases, Global Warming

Canada has First Solar Powered Community in North America

Recent News on Energy and the Environment 12.12.08

leave a comment »

Posted by: Karl Ramjohn

Some recent articles featured on the Energy Environment News Portal, on current and emerging issues related to energy and the environment

Wind, Water and Sun superior to Biofuels, Nuclear and Coal for Clean Energy

Degraded grasslands better option for biofuels

UN Climate Chief Lowers Expectations For 2009 Deal

Poznan: Indigenous Rights Row Threatens Rainforest Protection Plan

EU Leaders Agree 20% 2020 Renewable Energy Target

How green is your network?

Recent News on Energy and the Environment 05.12.08

leave a comment »

Sustainable Energy (Video)

with one comment

Posted by: Karl Ramjohn

Sustainable Energy

This might not add much to the debate and discussion on “Sustainable Energy”, but it has a somewhat different presentation format: 

More videos on sustainable energy, climate and related: Geo Energy Network Media

Recent News on Energy and the Environment 09.11.08

leave a comment »

Recent News on Energy and the Environment 02.11.08

leave a comment »

Nanotechnology from an Industrial Ecology Perspective

leave a comment »

Posted by: Karl Ramjohn

There has been much discussion in recent times of the possible impacts on health and the environment, associated with the emerging field of nanotechnology, for example: 

Nanotechnology Not That Green

Nanotechnology’s Public Health Hazard

Nano-pollution: the next scare story?

The following research paper provides a substance-flow analysis (SFA) of carbon nano-tubes from an industrial ecology perspective

Lekas, D. 2005. Analysis of Nanotechnology from an Industrial Ecology Perspective Part II: Substance Flow Analysis of Carbon Nanotubes. Yale School of Forestry & Environmental Studies. November 2005; 22 pp.

Link to full paper —> http://www.nanotechproject.org/file_…ed%20part2.pdf

1. Introduction

The “next plastic,” the future for electronics, a new energy storage material. Such descriptors have been given to the nanomaterial carbon nanotubes. These carbon atom cylinders with diameters under 100 nanometers are quickly becoming the focus of significant research and production around the world. Many people estimate that we will see high penetration of carbon nanotubes into everyday products in the near future. At the same time, however, many have expressed concern over the potential health risks from exposure to nanotubes. In order to better understand the scope of nanotube production, use, and destiny, particularly in terms of their impacts in the environment and on human health, this paper presents findings from an investigation into the feasibility of performing a substance flow analysis on carbon nanotubes.

A substance flow analysis (SFA) is a study of the flow of specific materials throughout the economy from cradle to grave. This approach has been called “a tool for analyzing the societal metabolism of substances,”. It examines and attempts to quantify the inputs of a substance or material into production, end-use applications, and ultimately end-of-life phases. Insight into the material inputs and outputs and other detail at one level or stage (e.g., production) may influence findings at other levels.

A SFA can be an appropriate tool when the material of interest is linked to a particular impact and thus warrants a more focused analysis on the “stocks and flows” and “concentrations in the environment,”. Because of the potential environmental and health impacts of carbon nanotubes (pending their penetration into products and uses), I hypothesized that the SFA approach would help shed light on the uncertain impacts. More specifically, I suspected that information on the quantity of carbon nanotubes produced would better inform understanding on the application of these substances into end uses, and that end-use information would improve the understanding of potential consequences of carbon nanotubes to users and in the environment. 

2. Methodology
3. Nanotube Overview
4. Carbon Nanotube SFA Findings
5. Conclusions

Recent News on Energy and the Environment 26.10.08

leave a comment »

Recent News on Energy and the Environment 19.10.08

leave a comment »

Magma Energy – Feasible since 1982 !?

leave a comment »

Submitted by: Karl Ramjohn

MAGMA ENERGY

This is a report that was published in 1982, representing research from the late 1970’s – i.e. during the previous “energy crisis” when the elevated oil prices had created much interest in the field of alternative / renewable energy (like in the present). This is one of the many initiatives that seems to have been forgotten when the oil prices crashed in the mid-80’s, but it is very interesting to read from the perspective of our present circumstances…

John L. Colp. 1982. Final Report – Magma Energy Research Project. Sandia National Laboratories, U.S. Department of Energy; 42 pp.

Link to report: Information Bridge: DOE Scientific and Technical Information – Sponsored by OSTI

ABSTRACT

  • The DOE-funded, 7-yr research project conducted by Sandia National Laboratories to assess the scientific feasibility of extracting energy directly from buried magma sources in the upper 10 km of the earth’s crust have been completed successfully.
  • Two methods of generating gaseous fuels in the high-temperature magmatic environment – generation of hydrogen by the interaction of water with ferrous iron, and hydrogen, methane and carbon monoxide generation by the conversion of water-biomass mixtures – have been investigated and show promise.
  • Scientific feasibility (the demonstration, by means of theoretical calculations and supporting laboratory and field measurements, that there are no known insurmountable theoretical or physical barriers which invalidate a concept or process) was demonstrated for the concept of magma energy extraction.
  • The US magma resource is estimated at 50,000 to 500,000 quads of energy – a 700- to 7,000 year supply at the current US total energy use rate of 75 quads per year.
  • Existing geophysical exploration systems are believed to be capable of locating and defining magma bodies and were demonstrated over a known shallow buried molten-rock body. Drilling rigs that can drill to the depths required to tap magma are currently available and experimental boreholes were drilled into buried molten rock at temperatures up to 1100 °C.
  • Engineering materials compatible with the buried magma environment are available and their performances were demonstrated in analog laboratory experiments
  • Studies show that energy can be extracted at attractive rates from magma resources in all petrologic compositions and physical configurations.
  • Downhole heat extraction equipment was designed, built and demonstrated successfully in buried molten rock and in the very hot margins surrounding it.
  • Two methods of generating gaseous fuels in the high temperature magmatic environment – generation of hydrogen by the interaction of water with ferrous iron, and hydrogen, methane and carbon monoxide generation by the conversion of water-biomass mixtures – have been investigated and show promise.

Related:

http://cr4.globalspec.com/thread/25305/Magma-Energy-Feasible-since-1982